Structure of New Alkaloids, Evonine and Neoevonine: X-Ray Analysis of BromoacetyIneoevonine Monohydrate

By Kyoyu Sasaki • and Yoshimasa Hirata, Chemical Institute, Faculty of Science, Nagoya University, Chikusa, Nagoya, Japan

Abstract

The structures, and absolute configurations, of two Celastraceae alkaloids, evonine and neoevonine, isolated from Euonymus Sieboldiana Blume, have been established unambiguously by X-ray analysis of bromoacetylneoevonine. These alkaloids are characterized by the presence of a macrocyclic evoninic acid diester substituted on a highly oxygenated sesquiterpene nucleus. The crystals are monoclinic, space group $P 2_{1}$, with $Z=2$ in a unit cell of dimensions: $a=14 \cdot 841(4), \quad b=14.645(4), \quad c=9 \cdot 642(3) \AA, \beta=90 \cdot 0(2)^{\circ}$. The structure was elucidated from diffractometer data by the heavy-atom method and the atomic co-ordinates were refined by Fourier and leastsquares calculations to $R 0.091$ for 1973 independent reflections. The absolute configuration was determined by the anomalous dispersion method and by comparison with the known absolute stereochemistry of the evoninic acid moiety.

The Celastraceae alkaloids, evonine ($\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{17}$, m.p. $184-190^{\circ} \mathrm{C}$) ${ }^{1}$ and neoevonine ($\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{16}$, m.p. 264 $\left.265^{\circ} \mathrm{C}\right)^{2}$ were isolated from the fruits of Euonymus Sieboldiana Blume. Evonine has been characterized as a polyhydroxylated sesquiterpene having five acetates and an evoninic acid residue. ${ }^{1}$ Another alkaloid, neoevonine was shown to be deacetylevonine, based on the fact that acetylation of neoevonine afforded evonine. ${ }^{2}$ To establish the structure of these compounds an X-ray crystal analysis of bromoacetylneoevonine monohydrate was taken, and our results now show that this derivative

[^0]has the structure (I). The structure of evonine (II) and of neoevonine (III) have been established by a combination of the chemical evidence and the results from this crystal-structure determination.

EXPERIMENTAL

Bromoacetylneoevonine (m.p. $138 \cdot 5^{\circ} \mathrm{C}$) was prepared by bromoacetylation of neoevonine $\left(\mathrm{BrCH}_{2} \cdot \mathrm{COBr}-\mathrm{NaH}\right.$-tetrahydrofuran, room temperature) and crystallized from ethanol as colourless needles elongated along the c-axis.

Crystal Data.- $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{NO}_{17} \mathrm{Br}, \mathrm{H}_{2} \mathrm{O}, \quad M=858 \cdot 6$. Monoclinic, $a=14.841(4), \quad b=14 \cdot 645(4), \quad c=9.642(3) \AA, \beta=$ $90 \cdot 0(2)^{\circ}, U=2095 \cdot 7 \AA^{3}, D_{\mathrm{m}}=1.37$ (by flotation), $Z=2$, $D_{\mathrm{c}}=1 \cdot 36 . \quad F(000)=892$. Space group $P 2_{1}\left(\mathrm{C}_{2}^{2}\right.$, No. 4)
from systematic absences: $0 k 0$ for k odd. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=16.09 \mathrm{~cm}^{-1}$.

R
(I) $\mathrm{CO}^{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{Br}$
(II)
(III) H

Crystallographic Measurements.-Lattice constants and intensities were measured at $5{ }^{\circ} \mathrm{C}$, by use of a Hilger and Watts automatic four-circle diffractometer Y-290 with $\mathrm{Cu}-K_{\alpha}$ radiation. The space group was determined from the systematic absences. Integrated intensities were measured for $\theta<65^{\circ}$ by the $\theta-2 \theta$ scan technique using $\mathrm{Cu}-K_{\alpha}$ radiation. A total of 2592 independent reflections were collected above background, of which 1973 had intensities $>3 \sigma(F) .^{3}$

Structure Analysis.-The initial co-ordinates of the bromine atom were obtained from the Harker section at $x=0.09, z=-0.58$, the y co-ordinate being arbitrarily assigned at $\mathbf{0 . 2 5}$. Structure factors phased on the bromine atom alone were calculated ($R 0.463$), and from these the first three-dimensional electron density map was computed. The positions of 16 atoms were then assigned, and the remaining atom positions except the oxygen atom of the solvated water, were derived successively from 4 cycles of subsequent block-diagonal least-squares refinements and Fourier syntheses; R was reduced to $\mathbf{0} \cdot 16$. The position of the oxygen of the solvent water was assigned from the difference Fourier synthesis calculated at this stage. Further refinement was made by 4 cycles of block-diagonal least-squares calculations with anisotropic temperature factors for bromine; the final R was 0.091 . The final structure factors are listed in Supplementary Publication No. SUP 20387 ($4 \mathrm{pp} ., 1$ microfiche).* After the final cycle of refinement, the shift of atomic co-ordinates were $<0 \cdot 25 \sigma$. Figure 1 is a perspective drawing of a crystal chemical unit along the c axis. The hydrogen atom contributions have not been included in the structure-factor calculations. The final fractional co-ordinates and temperature factors with standard deviations are given in Table 1. The atomic scattering factors used were taken from ref. 4.

All computations were performed on a FACOM $230=60$ at the Data Processing Centre, Kyoto University: data reduction and Patterson synthesis, DRPS by K. Sasaki; structure factors, diagonal least-squares, and Fourier with

* See note about Supplementary Publications in Notice to Authors No. 7, in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 4 pp. are supplied as full size copies).
isotropic temperature factors, DLSF by C. Katayama and K. Sasaki; structure factors, block-diagonal least-squares, and Fourier synthesis with anisotropic temperature factors, ATLS by C. Katayama and K. Sasaki.

Absolute Configuration.-In the final stage of the analysis the absolute configuration of the molecule was determined by Bijvoet's anomalous dispersion method, ${ }^{5}$ based on the bromine atom. The differences between $I(h k l)$ and $I(\bar{h} \bar{k} l)$ were measured on a Hilger and Watts four-circle diffractometer, by use of $\mathrm{Cu}-K_{\alpha}$ radiation. Structure factors were calculated for all the $h k l$ and $\bar{h} k l$ reflections, with a scattering factor for the bromine of the form: $f_{\mathrm{Br}}=f_{\mathrm{Br}}+$ $\Delta f^{\prime} \mathrm{Br}+i \Delta f^{\prime \prime}{ }_{\mathrm{Br}}$, where $\Delta f^{\prime} \mathrm{Br}=-0.9$ and $\Delta f^{\prime \prime}{ }_{\mathrm{Br}}=\mathbf{1} .5$. The results (Table 2) indicate that the absolute configuration had been established and that the co-ordinates in Table 1 give the correct absolute configuration if a lefthanded co-ordinate system is adopted. Furthermore, the

Figure 1
absolute stereochemistry of evoninic acid [(2S,3S)-3-(3-carboxy-2-pyridyl)-2-methylbutyric acid] (IV), which

was derived from evonine, had been assigned by means of chemical correlation reactions. ${ }^{1}$ Both results show that the absolute configuration of bromoacetylneoevonine can be represented by (I). Both Figures 1 and 2 have been drawn with reversal of the x co-ordinate, so that they portray correctly the absolute configuration.

RESULTS AND DISCUSSION

The present analysis has established the molecular structure and absolute configuration of bromoacetylneoevonine, and thus of evonine and neoevonine as (II)
${ }^{3}$ K. Sasaki and Y. Hirata, J. Chem. Soc. (B), 1971, 1565.
4 ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962.
${ }^{5}$ J. M. Bijvoet, A. F. Peerdeman, and A. J. van Bommel, Nature, 1951, 168, 271.
and (III). The sesquiterpene carbon skeleton, belonging to the eudalene type, carries four acetyl groups (${ }^{1} \mathrm{H}$ n.m.r.: $\delta 1.90,2.05,2.11$, and 2.16 p.p.m., each 3 H) and

Table 1
Atomic co-ordinates (as fractions of the cell edges), with their estimated standard deviations in parentheses, and temperature factors

	x	y	z	B / \AA^{2}
C(1)	$0 \cdot 4056(10)$	0.4449(11)	$0 \cdot 1197(16)$	$3 \cdot 15$
C(2)	$0 \cdot 3301(10)$	$0 \cdot 4037(11)$	$0 \cdot 2109(16)$	$3 \cdot 24$
$\mathrm{C}(3)$	$0 \cdot 2386(10)$	$0 \cdot 4134(11)$	$0 \cdot 1384(16)$	$3 \cdot 18$
C(4)	$0 \cdot 2366(10)$	$0 \cdot 3851(11)$	-0.0116(17)	$3 \cdot 29$
C(5)	0.3190(9)	$0 \cdot 4265(11)$	-0.0974(15)	$2 \cdot 46$
$\mathrm{C}(6)$	$0 \cdot 3243$ (9)	$0 \cdot 3950(11)$	$-0.2552(15)$	$2 \cdot 72$
C(7)	$0 \cdot 3756(10)$	$0 \cdot 4805(12)$	-0.3156(16)	$3 \cdot 39$
C(8)	$0 \cdot 4719$ (10)	$0 \cdot 4735(12)$	-0.2614(16)	$3 \cdot 22$
$\mathrm{C}(9)$	0.4811 (9)	$0 \cdot 4701(11)$	-0.1035(14)	$2 \cdot 27$
C(10)	$0 \cdot 4121$ (9)	$0.4111(10)$	-0.0272(15)	$2 \cdot 30$
C(11)	$0 \cdot 2327(11)$	$0 \cdot 2806(12)$	-0.0214(17)	$4 \cdot 00$
C(12)	$0 \cdot 3257(10)$	$0 \cdot 5608(11)$	-0.2423(16)	$3 \cdot 06$
C(13)	$0 \cdot 3819$ (11)	0.6474(13)	-0.2299(18)	$4 \cdot 12$
C(14)	$0 \cdot 2375(12)$	$0.5846(13)$	-0.3172(19)	$4 \cdot 62$
C(15)	$0 \cdot 4463$ (10)	$0 \cdot 3084(11)$	-0.0299(17)	$3 \cdot 35$
$\mathrm{O}(16)$	$0 \cdot 4913$ (7)	$0 \cdot 4326$ (8)	$0 \cdot 1847(11)$	$3 \cdot 79$
C(17)	$0 \cdot 5200$ (13)	$0 \cdot 4913(15)$	$0 \cdot 2875(21)$	$5 \cdot 56$
$\mathrm{O}(18)$	$0 \cdot 4623(9)$	$0.5513(10)$	$0 \cdot 3270$ (14)	$6 \cdot 37$
$\mathrm{C}(19)$	0.6083(13)	$0 \cdot 4677(16)$	$0.3423(21)$	$5 \cdot 92$
$\mathrm{O}(20)$	$0 \cdot 3437$ (6)	$0 \cdot 3093(7)$	$0 \cdot 2343(10)$	$2 \cdot 75$
C(21)	$0 \cdot 3743(11)$	$0 \cdot 2838(12)$	$0 \cdot 3629(17)$	$3 \cdot 62$
$\mathrm{O}(22)$	$0 \cdot 3968(9)$	$0 \cdot 3384(10)$	$0 \cdot 4477(15)$	5.78
C(23)	$0 \cdot 3788(13)$	$0 \cdot 1824(15)$	$0 \cdot 3730(22)$	$5 \cdot 70$
$\mathrm{O}(24)$	0.2206(7)	$0.5131(7)$	$0 \cdot 1419(11)$	$3 \cdot 20$
$\mathrm{C}(25)$	$0 \cdot 1819(11)$	$0.5514(13)$	$0 \cdot 2528(19)$	$4 \cdot 65$
$\mathrm{O}(26)$	$0 \cdot 1667$ (9)	$0 \cdot 5087(10)$	$0 \cdot 3550(14)$	$5 \cdot 91$
C(27)	$0 \cdot 1591$ (11)	$0 \cdot 6508(12)$	$0 \cdot 2202(17)$	$3 \cdot 76$
C(28)	$0 \cdot 1504(13)$	$0 \cdot 7019(14)$	$0 \cdot 3576(20)$	$4 \cdot 95$
C(29)	$0.0748(11)$	$0 \cdot 6492(12)$	$0 \cdot 1295(17)$	$3 \cdot 69$
C(30)	-0.0207(12)	$0 \cdot 6370(14)$	$0 \cdot 2058(20)$	4.92
C(31)	$0.0721(11)$	$0 \cdot 7366$ (13)	$0.0418(17)$	4.07
C(32)	$0 \cdot 0983(11)$	$0 \cdot 7379$ (13)	-0.0972(17)	3.94
C(33)	$0 \cdot 0983(13)$	$0 \cdot 8194(14)$	-0.1692(19)	4.96
C(34)	$0 \cdot 0689(13)$	$0 \cdot 8968(15)$	-0.1002(21)	$5 \cdot 62$
C(35)	$0 \cdot 0479(11)$	$0 \cdot 8924$ (13)	$0.0395(19)$	4.75
$\mathrm{N}(36)$	$0 \cdot 0455(9)$	$0 \cdot 8145(10)$	$0 \cdot 1047(14)$	$4 \cdot 19$
C(37)	$0 \cdot 1261(11)$	$0 \cdot 6544(12)$	-0.1792(18)	$3 \cdot 88$
$\mathrm{O}(38)$	$0 \cdot 0814(8)$	$0.5847(9)$	-0.1716(12)	4.73
$\mathrm{O}(39)$	$0 \cdot 1969(8)$	$0 \cdot 6649$ (8)	-0.2514(12)	4.44
$\mathrm{O}(40)$	$0 \cdot 1536(7)$	$0 \cdot 4188(8)$	-0.0725(12)	4.05
$\mathrm{O}(41)$	$0 \cdot 3032(6)$	$0.5214(7)$	$-0.1053(10)$	2.76
$\mathrm{O}(42)$	$0 \cdot 2381$ (7)	$0 \cdot 3918(8)$	$-0.3223(11)$	$3 \cdot 71$
C(43)	$0 \cdot 2043(11)$	$0 \cdot 3138(13)$	$-0.3733(18)$	$4 \cdot 34$
$\mathrm{O}(44)$	0.2447(7)	0.2441 (9)	$-0.3687(12)$	4.95
C(45)	$0 \cdot 1139(13)$	$0 \cdot 3393(15)$	-0.4403(22)	$5 \cdot 99$
$\mathrm{O}(46)$	$0.5313(7)$	$0 \cdot 4804(8)$	$-0.3395(11)$	3.73
$\mathrm{O}(47)$	$0 \cdot 5705(6)$	0.4428(7)	-0.0772(10)	$3 \cdot 01$
C(48)	$0 \cdot 6299(12)$	0.5081 (13)	-0.0519(19)	$4 \cdot 63$
$\mathrm{O}(49)$	0.6119(9)	$0.5853(11)$	-0.0445(15)	6.73 7.42
C(50)	$0 \cdot 7234(15)$	0.4689(18)	-0.0305(25)	$7 \cdot 42$ 3.19
$\mathrm{O}(51)$	$0 \cdot 4802(7)$	$0 \cdot 2931(7)$	-0.1712(11)	$3 \cdot 19$
C(52)	$0 \cdot 5603(11)$	$0 \cdot 2523(15)$	$-0.1871(18)$	4.72
$\mathrm{O}(53)$	$0 \cdot 6070$ (8)	0.2243(10)	-0.0955(13)	$5 \cdot 89$ 4.48
$\mathrm{C}(54)$	$0.5927(11)$	0.2521(14)	$-0.3386(17)$	$4 \cdot 48$
$\mathrm{Br}(55)$	$0 \cdot 0865(2)$	$0 \cdot 2520$ (3)	$-0.5817(3)$	10
$\mathrm{O}(56)$	0-1647(15)	0.9947(19)	0.4736(27)	$15 \cdot 10$

* For the bromine atom anisotropic temperature factors were of the form:

$$
\begin{aligned}
& T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right] \\
& \text { with parameters. } \\
& \beta_{11} \\
& \beta_{22}
\end{aligned} \beta_{33}
$$

an evoninic acid residue. The sesquiterpene nucleus is a 6 -oxabicyclo $[3,2,1]$ octane ring fused with a chair cyclohexane ring, which forms a thirteen-membered ring with

Table 2
Comparison of the observed and calculated intensity differences used for the establishment of absolute configuration

h	k	l	$\left\|F_{\mathrm{c}}(h k l)\right\|$	$\left\|F_{\mathrm{c}}(\vec{h} k l)\right\|$	$I_{o}(h k l) I_{o}(\bar{\hbar} k l)$
6	1	1	$34 \cdot 29$	36.32	$>$
$\overline{5}$	4	1	26.66	$29 \cdot 37$	$>$
$\overline{3}$	1	1	$135 \cdot 77$	$136 \cdot 13$	$>$
$\overline{2}$	7	1	$55 \cdot 31$	$55 \cdot 26$	$<$
1	5	1	$62 \cdot 18$	61.02	$<$
9	1	2	$37 \cdot 42$	$37 \cdot 21$	$<$
7	2	2	$30 \cdot 04$	$29 \cdot 63$	$<$
6	1	2	16.28	17.22	$>$
$\overline{5}$	4	2	28.75	27.74	$<$
$\overline{3}$	1	2	$60 \cdot 66$	60.52	$<$
$\overline{2}$	7	2	$31 \cdot 18$	29.23	$<$
I	5	2	23.42	23.59	$>$
6	1	3	$45 \cdot 60$	44.01	$<$
$\overline{5}$	3	3	66.57	65-21	$<$
2	2	3	$14 \cdot 68$	18.25	$>$
$\overline{5}$	4	4	$17 \cdot 16$	$17 \cdot 48$	$>$
3	1	4	$37 \cdot 06$	$38 \cdot 36$	$>$
$\overline{3}$	1	5	$30 \cdot 96$	29.98	$<$
3	1	6	$40 \cdot 80$	$40 \cdot 87$	>
2	2	1	69.75	71.45	$>$
4	2	1	$40 \cdot 65$	40.92	$>$
1	3	2	15.06	$17 \cdot 06$	$>$
3	2	2	$46 \cdot 92$	$49 \cdot 11$	$>$
4	2	2	26.45	$27 \cdot 21$	$>$
1	3	3	$35 \cdot 56$	$37 \cdot 04$	$>$
2	2	3	91.49	91.03	$<$
3	2	3	$40 \cdot 67$	$42 \cdot 25$	$>$
4	2	3	36.55	$37 \cdot 42$	$>$
1	3	4	$55 \cdot 82$	57.34	$>$
2	2	4	18.70	21.03	$>$
3	2	4	41.74	39.05	$<$
1	3	5	$40 \cdot 70$	$40 \cdot 32$	$<$

an evoninic acid residue. Broadly speaking, the molecular shape shows that the acetyl groups are on the β-side of the trans-fused cyclohexane rings, whereas the

Table 3
Molecular geometry
(a) Bond distances (\AA)

B	$\mathrm{O}(20)-\mathrm{C}(21)$	1.37	
$\mathrm{C}(1)-\mathrm{C}(2)$	1.55	$\mathrm{C}(21)-\mathrm{O}(22)$	1.19
$\mathrm{C}(1)-\mathrm{C}(10)$	1.50	$\mathrm{C}(21)-\mathrm{C}(23)$	1.48
$\mathrm{C}(1)-\mathrm{O}(16)$	1.42	$\mathrm{C}(1.42$	
$\mathrm{C}(2)-\mathrm{C}(3)$	1.54	$\mathrm{O}(24)-\mathrm{C}(25)$	1.34
$\mathrm{C}(2)-\mathrm{O}(20)$	1.41	$\mathrm{C}(25)-\mathrm{O}(26)$	$1 \cdot 19$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.51	$\mathrm{C}(25)-\mathrm{C}(27)$	1.53
$\mathrm{C}(3)-\mathrm{O}(24)$	1.48	$\mathrm{C}(27)-\mathrm{C}(28)$	1.53
$\mathrm{C}(4)-\mathrm{C}(5)$	1.60	$\mathrm{C}(27)-\mathrm{C}(29)$	1.53
$\mathrm{C}(4)-\mathrm{C}(11)$	1.53	$\mathrm{C}(29)-\mathrm{C}(30)$	1.61
$\mathrm{C}(4)-\mathrm{O}(40)$	1.45	$\mathrm{C}(29)-\mathrm{C}(31)$	1.54
$\mathrm{C}(5)-\mathrm{C}(6)$	1.59	$\mathrm{C}(31)-\mathrm{C}(32)$	1.39
$\mathrm{C}(5)-\mathrm{C}(10)$	1.56	$\mathrm{C}(31)-\mathrm{N}(36)$	1.35
$\mathrm{C}(5)-\mathrm{O}(41)$	1.44	$\mathrm{C}(32)-\mathrm{C}(33)$	1.38
$\mathrm{C}(6)-\mathrm{C}(7)$	1.58	$\mathrm{C}(32)-\mathrm{C}(37)$	1.52
$\mathrm{C}(6)-\mathrm{O}(42)$	1.43	$\mathrm{C}(33)-\mathrm{C}(34)$	1.39
$\mathrm{C}(7)-\mathrm{C}(8)$	1.53	$\mathrm{C}(34)-\mathrm{C}(35)$	1.38
$\mathrm{C}(7)-\mathrm{C}(12)$	1.56	$\mathrm{C}(35)-\mathrm{N}(36)$	1.30
$\mathrm{C}(8)-\mathrm{C}(9)$	1.53	$\mathrm{C}(37)-\mathrm{O}(38)$	1.22
$\mathrm{C}(8)-\mathrm{O}(46)$	1.16	$\mathrm{C}(37)-\mathrm{O}(39)$	1.27
$\mathrm{C}(9)-\mathrm{C}(10)$	1.53	$\mathrm{O}(42)-\mathrm{C}(43)$	1.34
$\mathrm{C}(9)-\mathrm{O}(47)$	1.41	$\mathrm{C}(43)-\mathrm{O}(44)$	1.19
$\mathrm{C}(10)-\mathrm{C}(15)$	1.58	$\mathrm{C}(43)-\mathrm{C}(45)$	1.53
$\mathrm{C}(12)-\mathrm{C}(13)$	1.52	$\mathrm{C}(45)-\mathrm{Br}(55)$	1.91
$\mathrm{C}(12)-\mathrm{C}(14)$	1.53	$\mathrm{O}(47)-\mathrm{C}(48)$	1.33
$\mathrm{C}(12)-\mathrm{O}(41)$	1.46	$\mathrm{C}(48)-\mathrm{O}(49)$	1.16
$\mathrm{C}(14)-\mathrm{O}(39)$	1.47	$\mathrm{C}(48)-\mathrm{C}(50)$	1.51
$\mathrm{C}(15)-\mathrm{O}(51)$	1.47	$\mathrm{O}(51)-\mathrm{C}(52)$	1.33
$\mathrm{O}(16)-\mathrm{C}(17)$	1.38	$\mathrm{C}(52)-\mathrm{O}(53)$	1.20
$\mathrm{C}(17)-\mathrm{O}(18)$	1.29	$\mathrm{C}(52)-\mathrm{C}(54)$	1.54

TAble 3 (Continued)
(b) Angles (deg.)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(16)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{O}(16)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(20)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(20)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(24)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(24)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(40)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(40)$
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{O}(40)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(41)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(41)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{O}(41)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(42)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(42)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(12)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(46)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(46)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(47)$ $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(47)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(15)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(13)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(14)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{O}(41)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(41)$
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{O}(41)$
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{O}(39)$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{O}(51)$

117
110
108
110
112
107
115
104
107
112
110
108
112
108
106
115
113
106
109
104
108
98
113
107
106
102
110
115
119
125
116
106
113
108
108
110
107
115
108
114
111
104
108
111
108
109
106
1

$\mathrm{C}(1)-\mathrm{O}(16)-\mathrm{C}(17)$	121
(16)-C(17)-O(18)	15
$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(19)$	113
$\mathrm{O}(18)-\mathrm{C}(17)-\mathrm{C}(19)$	1
$\mathrm{C}(2)-\mathrm{O}(20)-\mathrm{C}(21)$	117
$\mathrm{O}(20)-\mathrm{C}(21)-\mathrm{O}(22)$	122
$\mathrm{O}(20)-\mathrm{C}(21)-\mathrm{C}(23)$	110
$\mathrm{O}(22)-\mathrm{C}(21)-\mathrm{C}(23)$	
$\mathrm{C}(3)-\mathrm{O}(24)-\mathrm{C}(25)$	120
(24)-C(25)-- ${ }^{(26)}$	2
$\mathrm{O}(24)-\mathrm{C}(25)-\mathrm{C}(27)$	109
$\mathrm{O}(26)-\mathrm{C}(25)-\mathrm{C}(27)$	9
$\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{C}(28)$	8
$\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{C}(29)$	107
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(29)$	6
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(30)$	7
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(31)$	109
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(31)$	109
$\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{C}(32)$	
$\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{N}(36)$	118
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{N}(36)$	120
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	120
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	125
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(37)$	115
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	117
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	120
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(36)$	121
$\mathrm{C}(31)-\mathrm{N}(36)-\mathrm{C}(35)$	1
$\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{O}(38)$	120
$\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{O}(39)$	114
$\mathrm{O}(38)-\mathrm{C}(37)-\mathrm{O}(39)$	126
$\mathrm{C}(14)-\mathrm{O}(39)-\mathrm{C}(37)$	
$\mathrm{C}(5)-\mathrm{O}(41)-\mathrm{C}(12)$	112
$\mathrm{C}(6)-\mathrm{O}(42)-\mathrm{C}(43)$	122
$\mathrm{O}(42)-\mathrm{C}(43)-\mathrm{O}(44)$	
$\mathrm{O}(42)-\mathrm{C}(43)-\mathrm{C}(45)$	106
$\mathrm{O}(44)-\mathrm{C}(43)-\mathrm{C}(45)$	132
$\mathrm{C}(43)-\mathrm{C}(45)-\mathrm{Br}(55)$	
$\mathrm{C}(9)-\mathrm{O}(47)-\mathrm{C}(48)$	17
$\mathrm{O}(47)-\mathrm{C}(48)-\mathrm{O}(49)$	12
$\mathrm{O}(47)-\mathrm{C}(48)-\mathrm{C}(50)$	
$\mathrm{O}(49)-\mathrm{C}(48)-\mathrm{C}(50)$	125
$\mathrm{C}(15)-\mathrm{O}(51)-\mathrm{C}(52)$	119
$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{O}(53)$	12
$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(54)$	113
$\mathrm{O}(53)-\mathrm{C}(52)-\mathrm{C}(54)$	

Figure 2
evoninic acid residue is on the α-side. The interatomic distances and valency angles are listed in Table 3. The mean estimated standard deviations of bond distances is $c a .0 .03 \AA$ and of valency angles is $c a .1 \cdot 2^{\circ}$. For the most part the corresponding bond lengths and angles are not significantly different from expected values. The mean lengths of the various types of bond are calculated as: $\mathrm{C}-\mathrm{C} 1.54, \mathrm{C}-\mathrm{O} 1.44$, aromatic $\mathrm{C}-\mathrm{O} 1.34, \mathrm{C}=\mathrm{O} 1.20$, and $\mathrm{C}-\mathrm{C}$ (pyridine ring) $1.38 \AA$. The $\mathrm{C}(37)-\mathrm{O}(39)$ bond distance ($1.27 \AA$) is smaller than the mean aromatic $\mathrm{C}-\mathrm{O}$ single bond on account of the interaction with the neighbouring pyridine ring. The $\mathrm{O}(18)-\mathrm{C}(17)-\mathrm{C}(19)$ and $\mathrm{O}(44)-\mathrm{C}(43)-\mathrm{C}(45)$ bond angles (131 and 132°) are greater than the values for other acetyl groups owing to the steric repulsions. Some intramolecular distances are listed in Table 4.

Consideration of the deviations from the best plane through the various atom groups (Table 5) show that the six-membered ring $\mathrm{C}(1)-(5),(10)$ has a slightly distorted

Table 4
Some intramolecular non-bonded contacts (\AA)

$\mathrm{C}(2) \cdots \mathrm{O}(18)$	$3 \cdot 12$	$\mathrm{C}(17) \cdots \mathrm{O}(22)$	$3 \cdot 28$
$\mathrm{C}(2) \cdots \mathrm{O}(26)$	$3 \cdot 19$	$\mathrm{C}(37) \cdots \mathrm{O}(41)$	$3 \cdot 32$
$\mathrm{C}(11) \cdots \mathrm{C}(15)$	$3 \cdot 20$	$\mathrm{O}(40) \cdots \mathrm{C}(43)$	$3 \cdot 37$
$\mathrm{C}(11) \cdots \mathrm{O}(42)$	$3 \cdot 33$	$\mathrm{O}(46) \cdots \mathrm{C}(48)$	$3 \cdot 16$
$\mathrm{O}(16) \cdots \mathrm{C}(21)$	$3 \cdot 28$	$\mathrm{O}(46) \cdots \mathrm{O}(51)$	$3 \cdot 28$
$\mathrm{O}(16) \cdots \mathrm{O}(22)$	$3 \cdot 21$	$\mathrm{O}(47) \cdots \mathrm{O}(53)$	$3 \cdot 25$
$\mathrm{O}(16) \cdots \mathrm{C}(48)$	$3 \cdot 27$	$\mathrm{O}(44) \cdots \mathrm{Br}(55)$	$3 \cdot 12$

TAble 5
Equations of least-squares planes in the form $l X+n Y$ $+n Z=p$ where X, Y, and Z are co-ordinates in \AA. Deviations (\AA) of atoms from the planes are listed in square brackets; atoms not included in the deriviations of the planes are italicized

Plane (1):
$\begin{array}{llllll}\text { Cyclohexane ring } & 0.0836 & 0.9906 & 0.1087 & 6.4645,\end{array}$
$[\mathrm{C}(2) 0.02, \mathrm{C}(3)-0.02, \mathrm{C}(5) 0.02, \mathrm{C}(10)-0.02, C(1) 0.62$ $C(4)-0.60, C(7) 0.64, C(8) 0.72]$

Plane (2):
$\begin{array}{lllll}\text { 6-Oxabicyclo[3,2,1]- } & 0.0088 & 0.9977 & 0.0670 & 5.3079\end{array}$ octane ring
$[\mathrm{C}(5) 0.04, \mathrm{C}(7),-0.03, \mathrm{C}(12)-0.05, \mathrm{O}(41) 0.06, C(6)$ $-0.70]$

Plane (3) :
$\begin{array}{lllll}6 \text {-Oxabicyclo[3,2,1]- } & 0.8826 & 0.2357 & 0.4067 & 6.8537\end{array}$ octane ring
$[\mathrm{C}(7) 0.01, \mathrm{C}(8)-0.04, \mathrm{C}(9) 0.01, \mathrm{O}(46) 0.02, C(5)-0.64$, $C(10)-0.81]$

Plane (4):
$\begin{array}{lllll}\text { Pyridine ring } & 0.9461 & 0.1686 & 0.2763 & 2.9436\end{array}$
$[\mathrm{C}(31) 0.00, \mathrm{C}(32) 0.00, \mathrm{C}(33) 0.01, \mathrm{C}(34)-0.03, \mathrm{C}(35) 0.03$, $\mathrm{N}(36)-0.02, C(37)-0.03, C(29) 0.06, O(38)-0.81$, $C(49) 0.79]$
chair conformation. In the 6 -oxabicyclo[$[3,2,1]$ octane ring the angle between the plane $\mathrm{C}(7)-(9), \mathrm{O}(46)$ and the plane $\mathrm{C}(5), \mathrm{C}(7), \mathrm{C}(12), \mathrm{O}(41)$ of the α-envelope fivemembered ring is 75°, and the angle between the plane $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5), \mathrm{C}(6)$ and that of the pyridine ring is 73°.

Table 6
Intermolecular distances (\AA)
(a) Carbon-carbon $\begin{array}{ll}\mathrm{C}(30) \cdots \mathrm{C}\left(34^{\mathrm{I}}\right) & 3.73 \\ \mathrm{C}(50) \cdots \mathrm{C}\left(34^{\mathrm{v}}\right) & 3.49 \\ \mathrm{C}(50) \cdots \mathrm{C}\left(35^{\mathrm{v}}\right) & 3 \cdot 59\end{array}$
(b) Oxygen-nitrogen
$\mathrm{O}(40) \cdots \mathrm{N}\left(36^{\mathrm{II}}\right) \quad 3.34$
(c) Oxygen-oxygen
$\mathrm{O}(42) \cdots \mathrm{O}\left(22^{\mathrm{II}}\right) \quad 3.33$
$\mathrm{O}(44) \cdots \mathrm{O}\left(22^{\mathrm{II}}\right) \quad 3 \cdot 18$
$\mathrm{O}(46) \cdots \mathrm{O}\left(\mathbf{1 8}^{\mathrm{II}}\right) \quad 3 \cdot 53$
$\mathrm{O}(46) \cdots \mathrm{O}\left(22^{\text {II }}\right) \quad 3.54$
(d) Carbon-bromine
$\mathrm{C}(33) \cdots \mathrm{Br}\left(55^{\mathrm{III}}\right) \quad 3.78$
(e) Carbon-oxygen

C(16)	$\cdots \mathrm{O}\left(22^{\text {II }}\right.$)	$3 \cdot 17$
$\mathrm{C}(7)$.	- $\mathrm{O}\left(22^{\text {II }}\right.$)	3.10
C(14)	- $\mathrm{O}\left(26^{\text {II }}\right.$)	$3 \cdot 52$
C(15)	- O(49v)	$3 \cdot 46$
$\mathrm{C}(23)$	- $\mathrm{O}\left(\mathbf{4 6}^{\mathbf{V}}\right)$	$3 \cdot 27$
C(23)	$\mathrm{O}(49 \mathrm{~V})$	$3 \cdot 48$
$\mathrm{C}(35)$	O(40 ${ }^{\text {rv }}$)	$3 \cdot 03$
$\mathrm{C}(43)$	$\mathrm{O}\left(22^{\text {II }}\right.$)	$3 \cdot 36$
$\mathrm{O}(44)$. C(23 II)	$3 \cdot 31$
C(45)	- $\mathrm{O}\left(26 \mathrm{III}^{\text {I }}\right.$	$3 \cdot 27$
$\mathrm{O}(46)$	- C(19II)	$3 \cdot 28$
C(52)	- O(18)	$3 \cdot 26$
$\mathrm{O}(53)$	- $\mathrm{C}\left(13^{\text {V }}\right.$)	$3 \cdot 34$
C(54)	$\mathrm{O}\left(18{ }^{\mathrm{V}}\right)$	3.05

The arrangement of molecules in a crystal, as viewed along the c-axis, is shown in Figure 2. The intermolecular contacts were between the oxygen atom of the solvated water and a neighbouring molecule and are greater than the sum of the van der Waals radii. All intermolecular contacts were calculated, and the most significant contacts are given in Table 6. The packing is efficient with several contacts approaching the sum of the van der Waals radii; the shortest contact excluding hydrogen atoms is $3.03 \AA$ for $\mathrm{C}(35) \cdots \mathrm{O}(40)^{\mathrm{IV}}$, which is between the hydroxy-group on a cyclohexane ring and the carbon atom in a neighbouring pyridine ring.

Recently, mytoline has been isolated from the same family and its structure was elucidated by X-ray crystallography. ${ }^{6}$ The structure of the C_{15}-nucleus in mytoline is similar to the C_{15}-skeleta of our two alkaloids.
[1/2474 Received, 29th December, 1971]
${ }^{6}$ S. M. Kupchan, R. M. Smith, and R. F. Bryan, J. Amer. Chem. Soc., 1970, 92, 6667.

[^0]: ${ }^{1}$ M. Pailer and R. Libiseller, Monatsh., 1962, 93, 511.
 ${ }^{2}$ K. Sugiura, Y. Shizuri, H. Wada, K. Yamada, and Y. Hirata, Tetrahedron Letters, 1971, 2733.

